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ROLE OF EARLY WARNING SYSTEMS IN 
PREDICTING THE STOCK PRICE CRISIS: WHAT 
WE LEARNT FROM GRASSHOPPER AND ANTS 

FABLE 

 

Reza HABIBI 

Abstract 

Early warning systems are too important tools in predicting the 
crisis in financial institutions say banks and stock markets. A 
consequence of crashes in a specified stock or stock market is financial 
crisis. This paper considers designing an early warning system based 
on random walk theory and maximal inequality. First, mathematical 
tools are presented, and the early warning system is designed, then 
some real data sets are analysed. The performance of system is 
evaluated by some different criteria. After it, using a dynamic 
programming approach, a modified version of mentioned early warning 
system is proposed. Finally, a conclusion section is given. 

Keywords: Crash indicator; Dynamic programming; Early 
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1. Introduction 

The famous grasshopper and ants fable teaches us to worry 
(now in one warm spring day) about chance of occurring bad winter 
and food shortage (happening bad events) in future.  There, 
grasshopper learnt it is necessary to prepare for tomorrow and work 
today for what you need in future. Like this tale, a similar case exists 
for financial environments and institutions. Although, there is no crises 
and crash in a specific bank, insurance company or financial institution, 
however, there is no guarantee for a bad event in even near future, 
similar event could happen for grasshopper. There are many types of 
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financial crisis including banking crisis, currency crisis, speculative 
bubbles crashes, wider economic crisis, and international financial 
crisis. Most important causes of financial crisis are regulatory failures, 
uncertainty and herd behaviour, asset-liability mismatch, the risk of 
bankruptcy because of leverage, contagion and recessionary effects 
(see, Friedman and Posner,2010). One of dramatic type of financial 
crisis is the stock market crash at which stock prices drop rapidly and 
suddenly. It leads to speculative bubbles and economic crisis (see, 
Sornette, 2017).  

Different economic crises such as banking, financial, and 
currency lead to high economic costs and have negative impact to 
whole society. Development of early warning systems could help in 
prevention of economic and business crisis, while they present a 
systematic forecast of unwanted events. Early warning systems are 
used primary for detecting crises before damage has been made and 
for reducing false alarms of possible crisis. 

There are different approaches to develop a EWS; such as 
signal approach, binary classification tree and logit model, see Cashin 
and Duttagupta (2008). In its simplest version, the early warning 
systems (EWS) are warning systems designed to detect imminent 
disasters in financial systems. There are interesting EWS methods for 
stock market crashes say signal extraction methods, logit models, 
Bayes network, hidden Markov models, switching linear dynamic 
systems, naive Bayes switching linear dynamic system (see, 
Dabrowski et al., 2016). Acar et al. (2011) detected the stock market 
crashes using adaptive neuro fuzzy inference system (ANFIS) model. 
EWS's are also designed using data mining and machine learning 
techniques like artificial neural network, support vector machine and 
decision trees like classification and regression trees (CART) and chi-
squared automatic interaction detection (CHAID). For comprehensive 
review in EWS for financial crisis, see Acar et al. (2011). For an 
overview of empirical studies on EWS, see Ivashina and Scharfstein 
(2010) and Monnasoo & Mayes (2009). They have used different 
macroeconomic variables. Indeed, the economic variables associate 
crises with the conditions of financial sectors, external sectors, and real 
sectors. With regard to the latter, a few studies, see Walter and Willett 
(2012). 

Acar (2010) studied the behaviour of stock market crash index 

𝐶𝑡 = 𝑥𝑡𝑠𝑡
2 in Istanbul stock exchange (ISE) where 𝑥𝑡 is the ISE national 
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100 index, 𝑝𝑡 =
𝑥𝑡−𝑥𝑡−1

𝑥𝑡−1
, 𝑠𝑡
2 is ten-day rolling variance of  𝑝𝑡 and 𝑟𝑡 =

𝑠𝑡
2

𝑠𝑡−1
2  

is the variance ratio index. Each financial time series has two important 
components which increase at each component results financial crises. 

These components are the level of time series which is 𝑥𝑡 and 

its variance 𝑠𝑡
2 (or volatility, if, 𝑠𝑡 is used in 𝐶𝑡, instead of 𝑠𝑡

2). Thus the 

combined multiplicative index of these components is 𝐶𝑡 = 𝑥𝑡𝑠𝑡
2.  

Notice that 𝐶𝑡 = 𝐶𝑡−1𝑟𝑡(1 + 𝑝𝑡). Let 𝑐𝑡 = log(𝐶𝑡). Then, 
𝑐𝑡 = 𝑐𝑡−1 + log(𝑟𝑡) + log(1 + 𝑝𝑡) ≅ 𝑐𝑡−1 + log(𝑟𝑡) + 𝑝𝑡 = 𝑐𝑡−1 + 𝑢𝑡. 

The last equation uses identity log(1 + 𝑥) ≅ 𝑥 for small 𝑥. This 
equation defines a random walk structure for 𝑐𝑡, the logarithm (in 
natural base) of crash index. Here, the behaviour of increment process 
𝑢𝑡 = log(𝑟𝑡) + 𝑝𝑡 is studied. First, the log(𝑟𝑡) is considered. The real 
data set is the daily stock price of Apple Corporation for one year time 
period of 2 March of 2017 to 2 March of 2018. Although, it is better to 
do this result for the stock market index, however, a single share such 
as Apple co. may have more fluctuations which shows the validity of 
theoretical result better than the stock market index. In that case, 
because of diversity of different stocks, their volatilities may offset by 
each other and researcher should be wait to see a considerable crises. 

The following figure shows the scatter plot of log(𝑟𝑡−1) versus 
log(𝑟𝑡). It is seen that there is no serial correlation in log(𝑟𝑡).  

Figure 1 
Plot of 𝐥𝐨𝐠(𝒓𝒕) vs. 𝐥𝐨𝐠(𝒓𝒕−𝟏) 
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The autocorrelation (ACF) and partial autocorrelation (PACF) 
functions are plotted as follows: 

Figure 2 
ACF and PACF of 𝐥𝐨𝐠(𝒓𝒕) 
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Again, it is seen that there is no time series pattern of  log(𝑟𝑡). 
As follows, the cumulative sum and cumulative sum of square plots of 
log(𝑟𝑡) are given to check the existence of change points in mean or 
variance of log(𝑟𝑡) which shows that there is no change point in mean 

and variance of log(𝑟𝑡). 
This facts show that the log(𝑟𝑡) is an independent sequence of 

random variables. To find the distribution of log(𝑟𝑡) it is seen that a 
Laplace distribution is best fitted to data with location parameter almost 
equal to zero and scale parameter 0.2637. It is done using the 
Modelrisk software. 
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Figure 3 
Histogram and fitted density of 𝐥𝐨𝐠(𝒓𝒕) 

 

The second part of 𝑢𝑡 is 𝑝𝑡 at which there are many famous 
models say geometric Brownian motion (GBM) which is fitted well to 
𝑥𝑡. Next, the existence of correlation between 𝑝𝑡 and log(𝑟𝑡) is 
surveyed. The sample correlation is 0.025 which implies the 
independence of 𝑝𝑡 and log(𝑟𝑡). Thus, 𝑐𝑡 = log(𝐶𝑡) = 𝑐𝑡−1 + 𝑢𝑡 and 

𝑢𝑡 = log(𝑟𝑡) + 𝑝𝑡 at which log(𝑟𝑡) has central Laplace distribution with 
scale parameter 0.2637 independent of 𝑝𝑡 where 𝑥𝑡 is a GBM process 

with parameters 𝜇 = 0 and 𝜎 = 0.0123.  Throughout the paper, this 
structure is kept fixed and using standard theorems in random walk 
theory, some useful features of stock market crash index 𝐶𝑡 are 
derived.  

This paper is organized as follows. In the next section, some 
mathematical aspects of this model are derived. Some real data sets 
are studied in section 3 and the performances of EWS's are surveyed 
in section 4. Dynamic programming solution is proposed in section 5. 
Conclusions are given in section 6. 

2. Mathematical results 

Let 𝑥𝑡 denote the price of a stock (stock market index or a 
specified stock) at time 𝑡, and its return be 𝑝𝑡, L-day rolling variance 

(volatility) of  𝑝𝑡 be 𝑠𝑡
2, and 𝑟𝑡 =

𝑠𝑡
2

𝑠𝑡−1
2  be the variance ratio index. Then, 
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the logarithm (in natural base) of stock crash index is given by 𝑐𝑡 =
log(𝐶𝑡) = 𝑐𝑡−1 + 𝑢𝑡 at which 𝑢𝑡 = log(𝑟𝑡) + 𝑝𝑡 where 𝑝𝑡 's are 

independent with common 𝑁(0, 𝜎2) distribution and 𝑧𝑡 = log(𝑟𝑡) has 

Laplace distribution with density 
1

2𝜃
𝑒−

|𝑧|

𝜃  −∞ < 𝑧 < ∞. This method can 

be considered as a signaling approach to EWS 's approaches. 
It is easy to see that 𝐸(𝑢𝑡) = 0 and 𝑐𝑜𝑣(𝑢𝑡, 𝑢𝑡+ℎ) = 0 for ℎ ≠ 0 

and 𝑣𝑎𝑟(𝑢𝑡) = 𝜎
2 + 2𝜃2 < ∞. Let 𝛾 denote the threshold at which 𝐶𝑡 >

𝛾 is equivalent to stock (market) crash. Then, for large 𝑡's, the 
probability of crash, using the central limit theorem (CLT), is given by  

𝑃(𝐶𝑡 > 𝛾) = 𝑝(𝑐𝑡 > log(𝛾)) ≈ 1 − 𝑁 (
log(𝛾)

√𝑡(𝜎2+𝜃2)
), where 𝑁 is the 

standard normal distribution function. When, 𝑝𝑡 's are independent with 

time varying 𝑁(0, 𝜎𝑡
2) distributions, then  

𝑝(𝑐𝑡 > log(𝛾)) ≈ 1 − 𝑁

(

 
log(𝛾)

√∑ (𝜎𝑖
2 + 2𝜃2)𝑡

𝑖=1 )

 . 

Also, since 𝐸(𝑢𝑡) = 0, thus, 𝑐𝑡 is a martingale. Let the stopping 
time 𝜏𝛾 be first time at which 𝐶𝑡 passes 𝛾, indeed,  

𝜏𝛾 = inf{𝑡; 𝐶𝑡 > 𝛾} = inf{𝑡; 𝑐𝑡 > log(𝛾)}. 

Thus, 

𝑃(𝜏𝛾 ≤ 𝑡) = 𝑃(𝑚𝑎𝑥0≤𝑠≤𝑡𝑐𝑡 ≥ log(𝛾)) ≤
𝐸(𝑐𝑡

2)

(log(𝛾))2
=
𝑡(𝜎2 + 2𝜃2)

(log(𝛾))2
. 

For the last inequality, the Doob martingale inequality, see 
Bjork (2009), is used. When, 𝑝𝑡 's are independent with time varying 

𝑁(0, 𝜎𝑡
2) distributions, thus, using the maximal inequality for partial 

sum, it is seen that  

𝑃(𝜏𝛾 ≤ 𝑡) ≤
∑ (𝜎𝑖

2 + 2𝜃2)𝑡
𝑖=1

(log(𝛾))2
. 

Suppose that the upper bound of 𝑃(𝜏𝛾 ≤ 𝑡) is considered as the 

probability of crash, therefore, 𝑃(𝜏𝛾 = 𝑡) ∝
𝜎𝑡
2+2𝜃2

(log(𝛾))2
 for discrete time 

points 𝑡's. For example, assume that 𝑡 = 1,… , 𝑛, therefore, 𝑃(𝜏𝛾 = 𝑡) =
𝜎𝑡
2+2𝜃2

∑ (𝜎𝑖
2+2𝜃2)𝑛

𝑖=1

.  

Remark 1. Notice that, using Doob inequality, 𝑃(𝜏𝛾 ≤ 𝑡) ≤
𝐸(𝑓(𝑐𝑡))

f(log(𝛾))
, for every strictly increasing positive function 𝑓. This stylized fact 
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changes the values of probabilities, however, here, the probability is a 
tool that its large values at a specified time point shows the possible 
potentially crash and it is enough and it isn't important which type of 
probability function (what is 𝑓) is applied. 

 

Remark 2. Notice that 𝑃(𝜏𝛾 ≤ 𝑡) = 𝑃(𝑚𝑎𝑥1≤𝑗≤𝑡|𝑐𝑗| > log(𝛾)) ≤
1

(log(𝛾))2
𝐸(𝑐𝑡

2). Then, to bound the probability of crash, let  

1

(log(𝛾))2
𝐸(𝑐𝑡

2) ≤ 𝜀, 

for some predefined threshold 𝜀. Then, 𝐸(𝑐𝑡
2) ≤ 𝜀(log(𝛾))2. An 

estimate for 𝐸(𝑐𝑡
2) is the average of 𝑐𝑘

2, 𝑘 = 𝑡 − 2, 𝑡 − 1, 𝑡, that is, 𝑐2̅̅ ̅𝑡. 
Let  

𝜏𝛾
∗ = inf{𝑡; 𝑐2̅̅ ̅𝑡 > 𝜀(log(𝛾))

2}. 

This new stopping time also defines a new index for timing the 

crash of stock (market) index. To find 𝛾 or (log(𝛾)), notice that 𝐸(𝑐𝑡
2) =

∑ 𝐸(𝑢𝑗
2) = ∑ (2𝜃2 + 𝜎𝑖

2)𝑡
𝑗=1

𝑡
𝑗=1 . Thus, 

𝐸(𝑐𝑡
2)

(log(𝛾))2
< 𝜀, implies that log(𝛾) >

√
∑ (2𝜃2+𝜎𝑖

2)𝑡
𝑗=1

𝜀
. When, 𝜎𝑖

2 = 𝜎2, then log(𝛾) > √
𝑡(2𝜃2+𝜎2)

𝜀
. When, study 

period is 𝑡 = 1,… , 𝑇, then 

log(𝛾) = √
𝑇(2𝜃2 + 𝜎2)

𝜀
 

Another estimate for 𝐸(𝑐𝑡
2) is to substitute it by the sample 

variance of 𝑐𝑡.  

3 Real data sets 

Here, the above methods like probabilities (CLT, stopping time 
based) and criterion of remark 2 are studied for some real data sets.  

 
(a) Apple Co. data set 
To plot CLT probabilities, it is assumed log(𝛾) = 1, 

hypothetically.  
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Figure 4 
CLT based probability of crash 

 

Figure 5 
Stopping time-based probability of crash 

 

Each probability indicates that there is a tendency to crash in 
time point numbered 49 which corresponds to the 26 May 2017.  

 
 

0

0,00001

0,00002

0,00003

0,00004

0,00005

0,00006

1 9

1
7

2
5

3
3

4
1

4
9

5
7

6
5

7
3

8
1

8
9

9
7

1
0

5

1
1

3

1
2

1

1
2

9

1
3

7

1
4

5

1
5

3

1
6

1

1
6

9

1
7

7

1
8

5

1
9

3

2
0

1

2
0

9

2
1

7

2
2

5

2
3

3

0

0,005

0,01

0,015

0,02

0,025

1 9

1
7

2
5

3
3

4
1

4
9

5
7

6
5

7
3

8
1

8
9

9
7

1
0

5

1
1

3

1
2

1

1
2

9

1
3

7

1
4

5

1
5

3

1
6

1

1
6

9

1
7

7

1
8

5

1
9

3

2
0

1

2
0

9

2
1

7

2
2

5

2
3

3



Financial Studies – 2/2021 

14 

(b) General Motors (GM) company 
Using the method of remark 2, the daily stock price of General 

Motors (GM) company is studied during 9 March 2017 to 9 March 2018. 

The following plot shows the time series plot of 𝑐2̅̅ ̅𝑡, where the ten days 

variance are computed and then 𝑐2̅̅ ̅𝑡 are calculated.  

Figure 6  

Time series plot of 𝒄𝟐̅̅ ̅𝒕 

 

It is seen that the 𝑐2̅̅ ̅𝑡 goes up around 𝑡 = 56 and 78 which are 
15/6/2017 and 18/7/2017, respectively.  

 
(c) Intel Company 
Here, the Intel stock price is studied during 9 March 2017 to 9 

March 2018. The sample variance of 𝑐𝑡 is 0.6424 and assuming 𝜀 =
0.01, then log(𝛾) = 8.015. The following figure gives the time series plot 
of 𝑐𝑡 in the presence of threshold 8.015. It is seen that there is no 
chance for crashing of stock price of Intel Co.  
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Figure 7 
Time series plot of 𝒄𝒕 

 

(d) JPMorgan Chase & Co 
Here, the empirical distribution of 𝜏𝛾 = inf{𝑡 > 0; 𝑐𝑡 > log(𝛾)} is 

obtained as follows. To this end, the JPMorgan Chase & Co stock price 
data set is studied during 9 March 2017 to 9 March 2018. 

The 𝑣𝑎𝑟(𝑐𝑡) = 0.4433 for sub-period of 9 March 2017 to 28 July 

2017. Assuming 𝜀 = 0.02, then log(𝛾) = 4.71.  
A geometric Brownian motion is fitted to the stock price of 

JPMorgan Chase & Co with 𝜇 = 0.001008 and 𝜎 = 0.011. Running 
1000 iterations of Monte Carlo simulation yields the following histogram 
of 𝜏𝛾/257. The mean and standard deviation are 0.1525 and 0.1536, 

respectively and skewness and kurtosis measures are 1.84 and 7.13. 
Fitting a generalized extreme value (GEV) distribution gives the 
estimated location, scale, and shape parameters 0.1018, 0.1038 and 
0.4098, respectively. 
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Figure 8 
Histogram of 𝝉𝜸/𝟐𝟓𝟕 

 

 

Figure 9 
Density estimate of 𝝉𝜸/𝟐𝟓𝟕 

 

4. Performances 

Here, three measures are proposed to study the performance 
of above-mentioned procedures. Performance criteria are the 
probabilities of type I and type II errors measures and signal to error 
criterion.  
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4.1 Type I error. Again, consider the historical stock price of 
Intel Company, part c, section 3. Let 𝜀 = 0.01, then log(𝛾) = 8.015. 

Suppose that 𝑇 is 9 March 2018 and it was seen that there is no crisis 
during this period of study. Notice that the probability of type I error, 

that is 𝛼 = 𝑃(𝜏𝛾 ≤ 𝑇) = 𝑃(𝑚𝑎𝑥1≤𝑡≤𝑇|𝑐𝑡| > log(𝛾)). As follows, the 

second probability is simulated using the Monte Carlo simulation. To 
this end, the path of process of stock price of Intel Company 𝑥𝑡 is 
simulated using the GBM process with 𝜇 = 0.00149 and 𝜎 = 0.01478 

and then ten-day variances are computed and thus the 𝑐𝑇 is simulated. 
In this case, 𝛼 = 0. The following table gives several values of 𝛼's 

based on several choices for 𝜀.  

Table 1 
Type I errors for various selects of 𝜺 

𝜀 0.005 0.01 0.015 0.02 

log(𝛾) 11.34 8.015 6.544 5.66 

𝛼 0 0 0.27 0.997 

It is seen that for a small change in 𝜀, unfortunately, 𝛼 grows 

too fast. However, if one selects too small values for 𝜀, no crisis is 

detected, spuriously. This shows the inadequacy of upper bound 

log(𝛾) = √
𝑣𝑎�̂�(𝑐𝑡)

𝜀
 where 𝑣𝑎�̂�(𝑐𝑡) is the empirical estimate of 𝑣𝑎𝑟(𝑐𝑡). 

To overcome this difficulty, it is enough to find the null hypothesis (of 

no stock crisis) distribution of 𝑚𝑎𝑥1≤𝑡≤𝑇|𝑐𝑡| and find log(𝛾) such that 

𝑃(𝑚𝑎𝑥1≤𝑡≤𝑇|𝑐𝑡| > log(𝛾)) = 𝛼. 

The following table gives the values of log(𝛾) based on various 

selects for 𝛼. 

Table 2 
Various values of 𝐥𝐨𝐠(𝜸) 

𝛼 0.01 0.025 0.05 0.1 

log(𝛾) 7.387 7.173 7.032 6.852 

4.2 Type II error. Notice that the probability of type II error is 
𝛽 = 𝑃(𝑚𝑎𝑥1≤𝑡≤𝑇|𝑐𝑡| < log(𝛾)) when there is at least one crisis in stock 
price, in reality. Again, the following table gives the 𝛽. To induce stock 

crisis, during simulating stock price of Intel Company 𝑥𝑡, its values are 
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changed to 𝑥𝑡 − 20 for 𝑡 = 100,… ,106 and to 𝑥𝑡 − 26 for 𝑡 =
216,… ,223. It is seen that values of 𝛽's are too close to 𝛼's, surprisingly.  

Table 3 
Various values of 𝜷 

𝛼 0.01 0.025 0.05 0.1 

𝛽 0.015 0.023 0.047 0.098 

4.3 Noise to signal ratio. Following Bryde-Erichsen (2016), 
the noise to signal ratio (NSR) is defined as the proportion of false 
positive rate to true positive rate, that is  

𝑁𝑆𝑅 =

𝐹𝑃

𝐹𝑃+𝑇𝑁
𝑇𝑃

𝑇𝑃+𝐹𝑁

, 

where 𝐹𝑃, 𝐹𝑁, 𝑇𝑁, 𝑇𝑃 are elements of confusion matrix as follows 

Table 4 
Confusion matrix and its elements  

Decision/Real situation Crisis exists No crisis 

Crisis exists TP FP 

No crisis FN TN 

Here, the data set of General Motors (GM) company, part (b) of 
section 3, is used to compute the NSR criterion. First, a GBM process 
is fitted to stock price of this company with 𝜇 = 000107 and 𝜎 = 0.0177. 
Then, 𝑚𝑎𝑥1≤𝑡≤𝑇|𝑐𝑡| is simulated using Monte Carlo simulation to 
compute the 99 percent quantile of this random variable which is 7.25. 
Here, supposing there is no crisis, then, 𝐹𝑁 = 100 and 𝑇𝑁 = 100. For 

constructing a crisis, a decline in 𝜇 is made and it is assumed that after 
𝑡 = 150 (after 10 October 2017) 𝜇 is changed to 0.00005. Again, it is 

seen that 𝑇𝑃 = 749 and 𝐹𝑃 = 251. 

The confusion matrix is given as follows 

Table 5 
Confusion matrix for GM company 

Decision/Real situation Crisis exists No crisis 

Crisis exists 749 251 

No crisis 100 900 

Here, the NSR is 0.247 which is a small number and shows the 
accuracy of method.   
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5. Dynamic programming solution 

In this section, a dynamic programming approach is proposed 
for designing the early warning system. Notice that 𝑐𝑡 = 𝑐𝑡−1 + 𝑢𝑡, 𝑢𝑡 =

log(𝑟𝑡) + 𝑝𝑡 = 𝑝𝑡 + 𝑧𝑡 = 𝑔(𝑝𝑡 , 𝑧𝑡) where 𝑧𝑡 = log(𝑟𝑡) = log (
𝑠𝑡
2

𝑠𝑡−1
2 ). Here, 

it is assumed that crisis at stock price 𝑥𝑡 occurs at time 𝑡 at which 𝑧𝑡 is 
large. Thus, a modified 𝑐𝑇 criterion is given by  

𝑐𝑇 = 𝑚𝑎𝑥{𝑧𝑗}𝑗=1
𝑇 ∑𝑔(𝑝𝑗 , 𝑧𝑗)

𝑇

𝑗=1

. 

The Bellman equation is given by  
𝑐𝑡 = 𝑚𝑎𝑥{𝑧𝑡+1}{𝑐𝑡+1 + 𝑔(𝑝𝑡+1, 𝑧𝑡+1)}. 

 
Thus, a backward induction is used to obtain all values of 𝑧𝑡 

and the time of crisis is estimated by 𝜏 at which 𝑐𝜏 = max(𝑐𝑡). 
Equivalently, zτ = argmax1≤t≤Tc(zt). Here, the data set of Exxon Mobil 
Corporation (XOM) during 16 March 2017 to 16 March 2018. Here, 
again, a Laplace distribution is fitted to the zt with location and scale 
parameters -0.0171, 0.260425, respectively. The 99 percent quantile 
of simulated max1≤t≤T𝑐𝑡 is 2.074. For simulating max1≤t≤T𝑐𝑡, first, 7 
samples are drawn of Laplace distribution with location and scale 
parameters -0.0171, 0.260425 and its maximum is taken. Then, this 
value is added to 𝑝𝑡 and 𝑢𝑡 is simulated. Finally, 𝑐𝑡 is computed.  

6. Conclusions 

As stated in the introduction of paper, there are many 
approaches for seeing warning alarm soon to prevent or reduce huge 
losses of financial crises in different markets and institutions, such as 
banking, stock market, or even insurance. These approaches are 
mainly data mining and data science-based methods. However, the 
nature of stock prices and returns are probabilistic and statistical 
distributions and stochastic processes govern on them.  Also, there are 
many strong techniques such as Doob-inequality in modern probability 
literatures. Therefore, it is interesting to use these useful results to build 
a EWS. To this end, in this paper, the logarithm of crash indicator (and 
consequently its variance) is decomposed to its lag (variance of lag) 
and L-rolling volatility ratio (variance of L-rolling volatility ratio). This 
decomposition constructs a basis for upper bounding the probability of 
existence of crisis defined by some suitable stopping times. Simulation 
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results show the good performance of EWS in terms of type I and II 
errors.  
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