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A NOTE ON THE EARLY WARNING SYSTEM OF 
CHANGE POINTS: COMBINATION OF REGIME 

SWITCHING AND THRESHOLD MODELS  

 

Reza HABIBI, PhD 

Abstract 

Abrupt changes are a prevalent feature of financial data sets, 
such as prices of financial assets, returns of stocks, exchange rates, 
etc. An early warning system (EWS) can detect existing changes and 
predict possible future changes before they occur. Two important 
statistical models for change point detection and prediction are the 
regime-switching and threshold models. In the first model, the data set 
involves multiple structures that characterize the time series 
behaviours in different regimes. In a threshold model, change is 
detected as soon as a split variable passes a threshold. In this paper, 
by combining the two mentioned models, namely regime switching and 
threshold, an EWS for change point detection is designed. The 
underlying process for change detection obeys an AR(1) process. 
States are latent variables specifying whether a special time point is 
changed or not. They are realizations of the Markov chain. The 
predictive transition probabilities are determined by a threshold model 
based on adaptive recursive relations. This combination forms the 
mentioned EWS. Finally, two applications are given about change 
detection in stock returns and specifying business cycles.   

Keywords: AR(1) process, abrupt changes, business cycles, 
Markov chain, regime-switching probabilities, split thresholds 

JEL Classification: C53; C58; C63; G13; G17 

1. Introduction 

Many economic time series occasionally exhibit dramatic 
breaks in their behaviour, associated with events such as financial 
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crises or abrupt changes in government policy. The time series of 
commodity prices, exchange rates, and macroeconomic indicators 
such as inflation and interest rates are always suspected that at some 
unknown points, their means or volatilities are changed rapidly or 
gradually. There are many statistical and econometric methods for 
modelling point-of-change problems. These methods include least 
squares, Bayesian, likelihood ratio, information criteria, non-parametric 
and parametric methods and quality control charts. The change point 
analysis in the univariate and multivariate time series, almost all types 
of econometric regression models, changes in the statistical 
distribution of variables such as mean, variance and covariance 
structure and even random graph models have been studied. Two 
main approaches for studying the change points are regime switching 
models and threshold analysis. For a comprehensive review of change 
point analysis, see Pons (2018) and references therein.  

The Markov switching model of Hamilton (1994), also known as 
the regime-switching model, is one of the most popular nonlinear time 
series models considering the regime shift in economic models. Krolzig 
(1997) stated that a feature of the Markov switching model is that the 
switching equation is controlled by a latent state variable which obeys 
a first-order Markov chain. This model is perfect for describing 
dependent data showing dynamic patterns during different periods. 
Indeed, economists are interested in the behaviours of many economic 
variables, which are quite different during economic downturns.  

The regime-switching model contains two components. First, 𝑥𝑡 
is observation at time 𝑡 which satisfies in a time series model with an 

unknown parameter 𝜃𝑠𝑡
which depends on Markov chain 𝑠𝑡  (a latent 

variable) with state space {0,1} and transition probabilities 
𝑝𝑖𝑗 = 𝑃(𝑠𝑡+1 = 𝑗|𝑠𝑡 = 𝑖), 𝑖, 𝑗 = 0,1. 

Assuming, [𝑠𝑡 = 1]  stands for a bad event in the economy, 
such as a financial crisis or bankruptcy of important companies, then 
the posterior predictive probability 

𝑃(𝑠𝑡+ℎ = 1|𝑥𝑡 , 𝑥𝑡−1, … , 𝑥1), 

plays the role of the early warning system. 
Quantities 

𝑃(𝑠𝑡 = 1|𝑥𝑡, 𝑥𝑡−1, … , 𝑥1), 𝑃(𝑠𝑡 = 1|𝑥𝑇 , 𝑥𝑇−1, … , 𝑥1), 

for some 𝑇 > 𝑡 ≥ 1  are filtered and smoothed probabilities. For 

example, the event [𝑠𝑡 = 1] says about the possible existence of an 
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economic crisis at 𝑡 −th year whereas 𝑥𝑡 can be the level of inflation in 
a country, for example, represented by an RS-auto-regressive model. 
The 𝑥𝑡  itself may be binary variable 0,1 related to hyperinflation or 
regular economic situations governed by a logit or probit regression. 
Hamilton filter (see Hamilton, 1994) proposes a recursive relation to 
make Bayesian inference about 𝑠𝑡 given information 𝑥𝑡 , 𝑥𝑡−1, … , 𝑥1. 

Similarly, some recursive relations are derived for smoothed 
and forecasting probabilities (see Kim, 1994). Basically, these 
recursive relations use the expectation maximisation (EM) algorithm to 
make inferences about 𝑠𝑡 . These situations are studied by many 
authors in the early warning system literature, see Kole (2019). 
However, the novelty of this paper is that 𝑠𝑡  is characterised by a 
threshold time series analysis.  

The rest of the paper is organised as follows. In Section 2, 
literature reviews about the regime-switching model, threshold analysis 
techniques, as well as change point analysis are given. EWS models 
are also reviewed. Section 3 contains the methodologies applied in the 
current paper. Required notations and propositions are proposed. 
There first, the threshold states are defined. Then, the filtered, 
predictive and transition probabilities are given by using regime-
switching estimates of the AR(1) coefficient as a state equation. 
Section 4 contains the data and data analysis in two data sets, that is, 
the change point detection in stock returns and the diagnosis of the 
business cycles. Section 4 concludes.  

2. Literature review 

The literature review covers three topics, including regime-
switching models, early warning systems and threshold analysis.  

The regime-switching models capture changes in the economic 
system that generates the data. Asako and Liu (2013) studied the 
potential ability of the regime-switching model to study the dynamic of 
inflation. They concluded that a regime-switching model with an 
independent shift in the mean and variance is best fitted to data and 
has minimum variance forecast with respect to other models. Pons 
(2018) specified that the Markov switching model also differs from the 
models of structural changes. The structural change models allow for 
frequent changes at random time points, but the latter admits only 
occasional and exogenous changes. Kapetanios (2003) stated that 
papers in the literature use time series techniques with two regimes 
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and apply their models to their different economic time series, such as 
exchange rates. Krolzig (1997) showed that using the Markovian 
property, which regulates the current position of the state variable, a 
time series mechanism may prevail for a random period of time. The 
mentioned structure will be replaced by another structure when a 
switch takes place. Hamilton (1994) employed the Markov switching 
model to capture macroeconomic models of financial crises. They 
concluded that the Markov shifting model is found to successfully 
capture the timing of regime shifts in the financial/credit shocks. 
Recently, the regime-switching model has also been a popular choice 
in the study of business cycles. A highly successful attempt is 
incorporating a switching mechanism into the conditional variance of 
ARCH and GARCH models.  

The regime-switching model, together with threshold analysis, 
is used to construct the early warning systems, which are referred to 
as early warning systems (EWS). There are many methods for making 
early warning systems. Sanchez-Espigares and Lopez-Moreno (2021) 
stated that the two well-known approaches for making the EWSs are 
signalling and logit and probit regressions methods. Gao et al. (2015) 
studied how EWS helps system managers to make correct and suitable 
decisions before faults occur.  

Nonlinear time series such as threshold models have been 
studied by many papers in the literature for a comprehensive review of 
threshold analysis. An example is Asako and Liu (2013), who studied 
the effect of speculative bubbles on prices in the stock market of the 
United States, Japan and China using the threshold analysis at which 
the probability of breaking the bubbles related to the splitting variable. 
𝑧𝑡 and threshold ƙ. Throughout the TA model, the time series 𝑥𝑡 has a 

structural break as soon as the splitting variable 𝑧𝑡 goes beyond (or 
comes below) the threshold ƙ, see do-Dios Tena and Tremayne 
(2009), Kapetanios (2003) and references therein.  

In the current paper, it is assumed that the least square 
estimate of the coefficient of regime shift first-order autoregressive 
AR(1) plays the role of splitting  variable 𝑧𝑡 which, as soon as it passes 
the specified threshold, then a change point occurs in the parameters 
of the time series 𝑥𝑡  which is equivalent to the state [𝑠𝑡 = 1] . 

Otherwise, event [𝑠𝑡 = 0] happens. 
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3. Methodologies 

Here, using the threshold analysis technique, states of regime-
switching models are defined. To this end, let xt be the mean corrected 
first-order autoregressive AR(1) process xt defined by 

xt = βtxt−1 + εt; t ≥ 1,  

where x0 is the initial value of the process, |βt| < 1 for all t's, 

εt = σtzt, 

at which zt is white noise WN(0,1) time series. 
Indeed, 

xt = βst
xt−1 + σst

zt  

Here, βt = βst
 and σt = σst

 represent the regime-switching 

process where st  is a 0-1 valued Markov chain with transition 
probabilities 

pij = P(st = j|st−1 = i); i, j = 0,1. 

Indeed, the regime-switched processes are 
Ast

= A01(st = 0) + A11(st = 1),  

for A = β, σ at which 1(st = i) is zero if st = i and zero otherwise, for 

i = 0,1. 
As previously mentioned, using the threshold analysis 

technique, the least square estimate of the coefficient β determines the 
state of the world. 

Indeed, for example, if β̂t > 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑  (for some fixed but 
unknown constant 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑), then the time series data xt comes from 

state st = 1, and as soon as  β̂t ≤ 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑, then st = 0 governs on 

process xt. Since β̂t depends on β̂t−1, then st is a first-order Markov 

chain with a transition matrix P = (pij)i,j=0,1 . For example, p10 =

P(β̂t ≤ 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑|β̂t−1 > 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑) . Since 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑  is unknown, 

then st is a hidden Markov chain. 
Similar to most regime-switching processes, the xt  is an 

observable process that its parameters depend on st. In the simplest 
form, it constitutes a first-order regime.  

3.1. Regime switching coefficients 
Suppose that the initial value of βst

 is β0 = β. Based on the first 

t observations, and if there is no change in initial value throughout t 
observations, the least square estimate of β is given by 
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β̂t =
∑ xixi−1

t
i=2

∑ xi−1
2t

i=2

,  

The exponentially weighted least square estimate is given by 

β̂wt =
∑ γt−ixixi−1

t
i=2

∑ γt−ixi−1
2t

i=2

,  

for some suitable forgetting factor 𝛾 ∈ (0,1). For practical applications, 
usually 𝛾 = 0.95  is chosen. This estimate gives higher weights to 
recent observations, which ensures that successive observations in the 
same state block are applied to calculate the time-varying (state-to-
state) coefficients of the AR(1) process. 

Define weights of recursive estimates of the coefficient of AR(1) 
by 

λt =
𝑥𝑡−1

2

∑ xi−1
2t

i=2

, λwt =
𝑥𝑡−1

2

∑ γt−ixi−1
2t

i=2

,  

and deviation of the least square estimate β̂t (when there is no regime 

shift) of initial value 𝛽0 denoted by θ̂0t = β̂t − 𝛽0. 
Also, in the case of time-varying β's, let 

𝜃𝑡
𝑡𝑣 = = β̂t − βt.  

Under the regime-switching model, let θ̂t = β̂t − β0. 

Proposition 1. Relations (a) - (e) are correct.  

(a) β̂t = (1 − λt)β̂t−1 + λt
xt

xt−1
, 

(b) β̂wt = (1 − λwt)β̂wt−1 + λwt
xt

xt−1
, 

(c)  θ̂0t = (1 − λt)θ̂0t−1 + λt
εt

xt−1
,  

(d) θ̂t = (1 − λt)θ̂t−1 + λt
εt

xt−1
+ λtst(β1 − β0), 

(e) 𝜃𝑡
𝑡𝑣 = (1 − λt)𝜃𝑡−1

𝑡𝑣 + λt
εt

xt−1
− (1 − λt)(βt − βt−1) = 

(1 − λt)𝜃𝑡−1
𝑡𝑣 + λt

εt

xt−1
− (1 − λt)(st − st−1)(β1 − β0). 

Proof. Parts (a)-(d) are easy to prove and they are omitted. For 
part (e), it is enough to see that 

βt − βt−1 = βst
− βst−1

= (st − st−1)(β1 − β0)   

3.2. Required probabilities 
In this sub-section, transition, filtered and predictive 

probabilities are proposed.  
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(a) Transition probabilities. 
Let 휁 be a small positive number. Then, 

p01
t = 𝑃(θ̂t > 휁|θ̂t−1 = 휁) = 𝑃 (

εt

xt−1
> 휁 − 𝛿),  

where 𝛿 = β1−β0.  
Therefore, one can see that  

p00
t = 1 − 𝑝01 = 1 − 𝑃 (

εt

xt−1
> 휁 − 𝛿)  

p10
t = 𝑃(θ̂t = ζ|θ̂t−1 > 휁) = 𝑃 (

εt

xt−1
> 휁),  

and p11
t = 1 − p10

t . Here, εt = σtzt. It is assumed that zt has a standard 
normal distribution. 

(b) Filtered probabilities. 
Consider the filtered probability 

𝜋𝑡(1) = 𝑃(𝑠𝑡 = 1|𝑥𝑡 , … , 𝑥1),  

which can be written as  
𝜋𝑡(1) = 𝑃(𝑠𝑡 = 1|𝑠𝑡−1 = 1, 𝑥𝑡 , … , 𝑥1)𝑃(𝑠𝑡−1 = 1|𝑥𝑡−1, … , 𝑥1)

+ 𝑃(𝑠𝑡 = 1|𝑠𝑡−1 = 0, 𝑥𝑡 , … , 𝑥1)𝑃(𝑠𝑡−1 = 0|𝑥𝑡−1, … , 𝑥1)
= 𝑝01𝜋𝑡−1(0) + 𝑝11𝜋𝑡−1(1) 

 

Also, 𝜋𝑡(0)  can be written 𝑝00𝜋𝑡−1(0) + 𝑝10𝜋𝑡−1(1) . Thus, 

assuming 𝝅𝑡 = (𝜋𝑡(0), 𝜋𝑡(1))𝑇, it is seen that 𝝅𝑡 = 𝑃𝑡
𝑇𝝅𝑡−1. 

Notice that 𝜋𝑡(1) = 𝑃(𝑠1 = 1|𝑥1). Since, 𝑥1 = 𝛽𝑠1
𝑥0 + 휀1 , it is 

seen that  
𝑥1

𝑥0
− 𝛽0 = 𝛽𝑠1

− 𝛽0 +
휀1

𝑥0
= 𝛽1 − 𝛽0 +

휀1

𝑥0
= 𝛿 +

휀1

𝑥0
  

Hence, replacing the current relation in the last above equation, 
one can see that  

𝜋𝑡(1) = 𝑃 (
휀1

𝑥0
> 휁 − 𝛿),  

𝜋𝑡(0) = 1 − 𝜋𝑡(1).  

It is easy to see that  

𝝅𝑡 = {∏ 𝑃𝑖

𝑡

𝑖=2
}𝑇𝝅1  

Assuming 𝝅𝑡 converges to 𝝅∞, as 𝑡 → ∞, then 𝝅∞ = 𝑃∞𝝅∞. 
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The distribution 𝝅∞ is referred to stationary distribution and its 
existing, uniqueness, and finding it, is too important. 

(c) Predictive probabilities. 
The predictive probability 

ft+1(i) = P(st+1 = i|xt, … , x1), i = 0,1  

are written as  

ft+1(0) = p00πt(0) + p10πt(1)  

ft+1(1) = p01πt(0) + p11πt(1)  

Letting 𝐟t+1 = (ft+1(0), ft+1(1))T, it is seen that 𝐟t+1 = Pt
Tπt. The 

h-step ahead prediction probabilities vector is given by 

ft+h = Pt
T × … × Pt+h−1

T × πt  

3.3. AMOC model 
Here, the famous structural break model is studied using the 

above-mentioned results. Suppose that s0 and configuration 
(s1, … , sk0

, sk0+1, … , st) = (0,0, … ,0,1,1, … ,1) 

is observed. Here, the lengths of zeros and ones are k0 , t − k0 , 
respectively. 

This model is the at most one change (AMOC) model in change 
point analysis literature and k0  is an unknown change point. The 
likelihood function is given by 

L = p00
1 × … × p00

k0 × p01
k0+1

× p11
k0+2

× … × p11
t   

Suppose that σst
= σ is known and εt's are 𝑖𝑖𝑑 normal N(0, σ2) 

distribution. Then, p00
t , p01

t  and p11
t  are given as in the following Table.  

Table 1 
Transition probabilities 

Probability Equation 

𝐩𝟎𝟎
𝐭  

Φ (
ζ − δ

σ
|xt−1|), 

𝐩𝟎𝟏
𝐭  Φ (

δ−ζ

σ
|xt−1|), 

𝐩𝟏𝟏
𝐭  Φ (

−ζ

σ
|xt−1|). 

Source: Author’s 
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It is interesting to propose the maximum likelihood estimate of 
threshold parameter ζ. To this end, the likelihood function is given by  

L = ∏ Φ (
ζ − δ

σ
|xi−1|)

k0

i=1

× Φ (
δ − ζ

σ
|xk0

|) × ∏ Φ (
−ζ

σ
|xi−1|)

t

i=k0+2
  

The following proposition summarizes the above discussion.  

Proposition 2. Relations (a)-(d) are correct.  

(a) The time-varying transition probabilities are given by p00
t , p01

t  and 

p10
t , as defined in Table 1.  

(b) Let 𝑃𝑖 be 𝑖-th probability transition matrix, then filtered probability 𝝅𝑡 

is 𝝅𝑡 = {∏ 𝑃𝑖
𝑡
𝑖=2 }𝑇𝝅1. This probability vector plays the role of EWS.  

(c) Predictive probability is 𝐟t+1 = Pt
Tπt, 

(d) The likelihood function L, under the AMOC model, is  

L = ∏ Φ (
ζ−δ

σ
|xi−1|)

k0
i=1 × Φ (

δ−ζ

σ
|xk0

|) × ∏ Φ (
−ζ

σ
|xi−1|)t

i=k0+2 ,  

the MLE estimate of parameters such as ζ are obtained by numerical 
optimisation methods. 

Table 2 below shows various values of the maximum likelihood 
estimate (MLE) of ζ, for 𝑛 = 525, 𝑘0 = 273, 𝛽0 = 0.25. 

Table 2 
MLE of ζ 

𝜷𝟏\𝝈 0.1 0.2 0.3 0.4 

0.35 0.203 0.101 0.075 0.041 

0.45 0.221 0.151 0.111 0.205 

0.55 0.251 0.188 0.158 0.215 

0.65 0.296 0.197 0.182 0.255 

0.75 0.304 0.204 0.195 0.286 

0.85 0.321 0.213 0.201 0.304 
Source: Author’s 

4. Data analysis 

This paper combines regime-switching models with threshold 
analysis to obtain better results in change point analysis, a type of early 
warning system frequently used in financial fields. This manuscript 
proposes useful propositions to find heading warning probabilities. 
Here, two applications of the above-mentioned theoretical results are 
given in stock returns and business cycles.  
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(a) Stock returns. 
Returns of any stock may be positive or negative, which are 

states of the fitted Markov chain in this sub-section. Local trends are 
successive short-length sequences of positive or negative returns. 
Finding these local trends, in the short run, is too important for traders 
and scalpers to take long or short positions. Here, a regime-switching 
model with fixed transition probabilities is fitted to the daily return of 
Amazon Co.  

This series is defined as follows 
𝑥𝑡 = log(S𝑡) − log(S𝑡−1),  

for a period of 25 May 2021 to 23 May 2023, including 505 
observations. Here, S𝑡 denotes the price of the stock of Amazon Co. at 
𝑡-𝑡ℎ day. The one-step transition probabilities matrix is  

[
0.53 0.47
0.45 0.55

] 

The slopes of AR(1) for negative and positive returns are 
−0.00164, and 0.03489, respectively. The volatility seems to be fixed 
by examining the rolling estimates of standard deviation and checking 
its stability during the time, and it is 0.026. Here, using the Monte Carlo 
simulation, the distribution of maximum 𝑀  of 𝑥𝑡, 𝑡 = 1, … ,505  is 

approximated. It is seen that. 𝑀0.5 has zero skew and three kurtosis. 
That is, the normal distribution with a mean of 0.284 and standard 
deviation of 0.0153 is proposed for this random variable. Let 𝜏 be the 
upper bound for M with a 0.95 confidence level. Then, 𝜏 = 0.3091.  

(b) Business cycles. 
In economics, the business cycles are distinguished by the 

growth rate of macroeconomic variables such as unemployment and 
GDP. To this end, compute 

𝑥𝑡 = log(GDP𝑡) − log(GDP𝑡−1), 

where GDP𝑡 is the GDP of 𝑡-𝑡ℎ year. The data set is the growth rate of 
the US GDP from 1960 to 2020 (62 observations), taken from 
https://data.worldbank.org/. A time series plot indicating three cycles is 
proposed. 
 
 
 
 



Financial Studies – 2/2024 

16 

Figure 1 
Time series plot of GDP-GR of US 

 
Source: Author’s contribution 

The first-order AR is fitted, and the time series plot of β̂t is given 
as follows, which clearly indicates a change.  

Figure 2 
Slope of AR(1) model 

 
Source: Author’s contribution 

The logarithm of the likelihood function indicates the inverse V-
shaped figure. With a high probability, there is a possible change point 
at 𝑡 = 40 where the log-likelihood has been received to its maximum.  

Figure 3 
Log-likelihood plot 

 
Source: Author’s contribution 
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To make sure about the existence of the change point and its 

location, the probabilities p00
t  are plotted as follows. From this plot, it is 

seen that after t = 40, the probability of moving to state zero from state 
zero is negligible. Therefore, it is suspected there exists a change point 
at 𝑡 = 40. 

Figure 4 

Plot of 𝐩𝟎𝟎
𝐭  

 
Source: Author’s contribution 

5. Concluding remarks 

This paper studies the relationship between regime switching 
and threshold models and designs EWS using this relationship. The 
underlying process is AR(1). Some theoretical perspectives of EWS 
are proposed. Finally, it uses this EWS to study trading patterns and 
identify turning points in the stock market. This article has the following 
differences and advantages compared to similar articles. 

a) Although Asako and Liu's (2013) paper deals with the 
identification of price bubbles from the point of view of change, 
it does not look at the issue from the perspective of regime 
change, a structure that mainly occurs in the stock market. 

b) The paper by Gao, Cecati, and Ding (2015) is mainly used to 
identify change and fault points in mechanical systems. 
Although these methods are conventional, since they mainly 
consider deterministic methods, they cannot analyse the 
system's random states. 

c) Do-Dios Tena and Tremayne (2009) did not use threshold 
models in the analysis, which are mostly necessary in stock 
data analysis. 

0

0.2

0.4

0.6

0.8

1



Financial Studies – 2/2024 

18 

d) Although Hamilton's book (1994) is very good at describing all 
the variables of financial time series, it does not provide 
combined methods. 

e) Kapetanios (2003) considers only regime-switching models for 
change point analysis, which requires early warning algorithms, 
which are not found in that paper. 
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