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Abstract 

The study benchmarks four machine-learning algorithms—
Random Forest, XGBoost, CatBoost and Long Short-Term Memory 
(LSTM) networks—for forecasting stock market liquidity in Germany’s 
DAX equity market. Using data from January 2006 to May 2025, a 
Liquidity Score is constructed as a turnover-to-volatility ratio, designed 
to penalize wide intraday price swings while rewarding active trading 
behavior. This metric captures key microstructural aspects of liquidity 
and serves as the dependent variable throughout the analysis. It is 
paired with 41 independent variables that capture volatility, price 
ranges, return dynamics, technical indicators and cross-asset linkages. 
Empirical testing shows that the two gradient-boosting ensembles 
consistently outperform both Random Forest and the LSTM model, 
tracking sudden liquidity swings more accurately and delivering the 
tightest forecast errors. The evidence highlights (i) the practical 
superiority of tree-based boosting for high-frequency liquidity 
prediction, (ii) the value of rich, carefully engineered feature sets in 
modelling non-linear market micro-structure effects and (iii) the 
limitations of standard LSTM architectures when financial sequences 
are short and noisy. The findings offer actionable insights for traders, 
treasurers and regulators seeking real-time early-warning indicators of 
liquidity stress in European blue-chip equities. 
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1. Introduction 

Sharp contractions in market liquidity can intensify price 
volatility, raise transaction costs, and transmit financial stress across 
asset classes, making short-term liquidity forecasting essential for 
traders, treasurers, and regulators. However, such forecasting remains 
inherently difficult due to the complex, non-linear, and regime-
dependent interactions among order-flow variables, price dynamics, 
and cross-asset signals—features that traditional linear models are 
often ill-equipped to capture. Machine learning (ML) techniques offer a 
promising alternative by uncovering intricate patterns in high-
dimensional, noisy datasets, yet their comparative effectiveness in 
forecasting liquidity in major European equity markets remains 
underexplored, with few studies employing standardized, real-time 
evaluation frameworks. 

Against this backdrop the present study poses a single, guiding 
research question: Which of four widely used ML algorithms—Random 
Forest, XGBoost, CatBoost and Long Short-Term Memory network—
provides the most accurate and robust day-ahead forecasts of DAX 
equity-market liquidity? 

To answer this question the paper constructs a turnover-to-
volatility Liquidity Score for the German blue-chip index and pairs it with 
forty-one predictors grouped into five conceptual blocks: volatility 
metrics, price-range measures, return dynamics, technical indicators 
and cross-asset signals. Each algorithm is tuned and assessed within 
an identical walk-forward framework that preserves the chronological 
order of observations and replicates the constraints of real-time 
deployment. The resulting head-to-head comparison allows the study 
to isolate the contribution of model architecture from that of feature 
engineering. 

The article is structured as follows. Section 2 surveys the 
existing literature on liquidity forecasting and data-driven financial 
modelling, highlighting unresolved issues. Section 3 describes the 
data, defines the Liquidity Score and details the feature-engineering 
pipeline. Section 4 sets out the modelling framework, hyper-parameter 
tuning strategy and validation design. Section 5 reports empirical 
results, interprets comparative performance and discusses practical 
implications. Section 6 concludes, outlining limitations and suggesting 
directions for future research. 
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2. Literature review 

The forecasting of liquidity in capital markets has become 
increasingly significant in the wake of heightened financial volatility and 
systemic risk. Over the past decade, the emergence of machine 
learning (ML) techniques has introduced sophisticated approaches 
capable of capturing the non-linear, dynamic patterns inherent in 
liquidity measures. This literature review synthesises findings from 
recent academic contributions on the application of ML to liquidity 
forecasting, highlighting trends, methodological advancements, and 
key challenges. 

Traditional econometric models for liquidity forecasting have 
often relied on linear assumptions and limited feature sets. However, 
ML algorithms such as random forests, support vector machines, and 
deep learning architectures have demonstrated superior predictive 
capabilities, particularly in high-dimensional or noisy data 
environments (Guerra et al., 2022; Antony & Kumar, 2024).  

Kirkby and Andrean (2024) applied supervised ML algorithms 
to forecast bid-ask spreads in foreign exchange markets, revealing that 
such models can effectively anticipate microstructural changes in 
market liquidity. Similarly, Cabrol et al. (2024) explored ML-based 
forecasting of bond illiquidity, noting that models incorporating non-
linear interactions between fundamental variables outperformed 
benchmark methods. 

From a regulatory standpoint, ML models offer promising tools 
for risk detection and early warning. Triepels et al. (2021) applied 
recurrent neural networks (RNNs) to monitor high-value payment flows 
in real time, identifying anomalous liquidity behaviours at the intraday 
level. Guerra et al. (2022) further argued that ML enables more 
nuanced supervisory modelling of liquidity risk, allowing regulators to 
identify stress scenarios not captured by conventional stress testing 
frameworks. 

Furthermore, Pham et al. (2024) focused on exchange-traded 
funds (ETFs), demonstrating that ML can forecast ETF liquidity using 
trading activity, volatility, and underlying asset behaviour, offering 
practical insights for institutional investors. 

Despite the growing success of ML in liquidity forecasting, 
several limitations persist. Issues such as model interpretability, 
overfitting in high-frequency datasets, and the limited availability of 
labelled liquidity events remain significant (Samitas et al., 2022; Yang 
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et al., 2025). Additionally, data privacy concerns and the opacity of 
complex models, particularly deep learning, pose obstacles for 
regulatory adoption (Climent et al., 2019). 

Nevertheless, ensemble models and explainable AI techniques 
are emerging as solutions to these challenges, offering balance 
between accuracy and transparency (Tavana et al., 2018; Zhu et al., 
2020). 

Overall, the literature confirms that machine learning offers 
substantial advantages over traditional methods in forecasting liquidity 
and managing liquidity risk. Through improved modelling of non-
linearities, integration of textual data, and deployment in real-time 
supervisory systems, ML has emerged as a critical tool in modern 
financial analysis. Future research should focus on enhancing model 
explainability, integrating multi-modal data, and establishing 
standardised evaluation benchmarks for liquidity forecasting models. 

3.Methodology 

The dataset comprises daily observations from 1 January 2006 
to 1 May 2025 for four financial markets: the German equity index 
(DAX), the German volatility index (VDAX), spot gold, and the 
EUR/USD exchange rate. For each trading day, the data include open, 
high, low, and close quotations, trading volume (where available), and 
bid/ask prices. All data employed in this study were obtained from 
Refinitiv Datastream.  

Liquidity was proxied by a Liquidity Score, defined as a 
turnover-to-volatility ratio designed to penalise wide intraday price 
ranges while rewarding active trading behaviour. This metric captures 
core microstructural elements of liquidity and aligns with longstanding 
empirical approaches in financial market research (notably Kyle, 1985; 
Amihud, 2002). The Liquidity Score served as the dependent variable 
throughout the analysis. Missing values were handled using a 
backward fill method. To enhance interpretability and visualize 
prediction accuracy, seven-day moving averages of both observed and 
predicted Liquidity Scores were plotted (see Figure 1).  
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Figure 1 
Comparative Predictions on Liquidity Score (7-Day Rolling 

Mean) 

 
Source: Author’s contribution 

The construction of predictor variables was organised 
according to five conceptual blocks, reflecting volatility, price ranges, 
returns, technical indicators, and cross-asset interactions. Rolling 
standard deviations of closing prices were computed to capture asset-
specific volatility dynamics. For the DAX index, 5-day and 10-day 
windows were employed. For VDAX and gold, 5-day rolling windows 
were used. High–low price ranges for DAX, gold, and EUR/USD were 
calculated, and bid–ask spreads were included where available to 
account for microstructural noise. 

Logarithmic returns were computed as one-period, 
continuously compounded returns for DAX, gold, and EUR/USD, 
providing a standardised measure of price changes. Several technical 
indicators were incorporated to reflect momentum and trend-following 
dynamics. These included the 14-period Relative Strength Index (RSI), 
the Moving Average Convergence Divergence (MACD) along with its 
signal line, the 10-day and 50-day exponential moving averages 
(EMAs), the upper and lower bounds of Bollinger Bands, and the 14-
day Average True Range (ATR). Additionally, one-day lags and short-
term moving averages over 3-, 5-, and 7-day periods were included for 
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VDAX, gold, and EUR/USD to capture inter-asset linkages and short-
run dynamics. 

To mitigate the impact of multicollinearity while preserving 
explanatory strength, only predictors exhibiting an absolute Pearson 
correlation below 0.5 with the Liquidity Score were retained. This 
filtering procedure yielded a reduced yet robust subset of variables, 
forming the final feature matrix for model training. Figure 2 presents 
the matrix as a colour-graded heatmap, where warmer tones denote 
strong positive correlations, cooler tones indicate strong negative 
correlations, and the main diagonal reflects unit correlations by 
definition. 

Figure 2 
Correlation Matrix Heatmap 

 
Source: Author’s contribution 
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Figure 2 visualises the Pearson correlation matrix for the final 
set of retained predictors, all of which maintain an absolute correlation 
below the defined 0.5 threshold. The heatmap employs a diverging 
colour scale, with warm hues indicating positive correlations and cool 
tones representing negative relationships; the main diagonal, by 
construction, reflects unit correlation. The matrix reveals clusters of 
moderately interrelated features—such as lagged volatility measures 
and market microstructure indicators—which, although weakly 
correlated with the target individually, may contribute synergistically 
within non-linear modelling frameworks. This selective retention of 
weakly correlated variables reflects a modelling strategy that 
emphasises diversity, generalizability, and robustness over linear 
explanatory power, thereby reducing overfitting risks and enhancing 
model performance when employed in ensemble or deep learning 
architectures, as evaluated in Table 1 and depicted in Figure 3. 

To account for the temporal autocorrelation structure 
characteristic of financial time series, the dataset was partitioned using 
a forward-chaining chronological split. The final 20% of the 
observations, corresponding to the most recent period in the time 
series, were reserved as an out-of-sample test set to ensure unbiased 
performance evaluation. The preceding 80% of the data was employed 
for model training and hyperparameter tuning under a time-consistent 
cross-validation scheme. An additive seasonal-trend decomposition 
using Loess (STL), parameterised with a 30-day trading seasonality 
window, was performed to isolate trend, seasonal, and residual 
components. The decomposition indicated the presence of weak but 
consistent cyclical behaviour in the liquidity time series. To assess the 
stochastic properties of the Liquidity Score, Augmented Dickey–Fuller 
(ADF) tests were conducted. The resulting p-values were consistently 
below the 0.05 threshold, leading to rejection of the null hypothesis of 
a unit root and supporting the stationarity assumption required for 
subsequent modelling. 

Four supervised learning algorithms were selected for 
predictive modelling and comparative evaluation. These models were 
benchmarked using consistent performance metrics on the held-out 
test set to assess generalisation capability under realistic, temporally 
ordered conditions. 

Random Forest (RF), introduced by Breiman (2001), 
aggregates an ensemble of decorrelated decision trees to reduce 
variance while preserving low bias. In a financial context, Liaw and 
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Wiener (2002) demonstrated RF’s versatility for regression problems 
involving noisy, high-dimensional inputs. The method’s robustness to 
multicollinearity and its built-in measure of variable importance make it 
an attractive baseline for liquidity forecasting. It was implemented with 
hyperparameters including the number of trees (ranging from 100 to 
500), maximum tree depth (either unbounded or capped at 40), 
minimum samples per split (between 2 and 10), minimum samples per 
leaf (between 1 and 4), and feature selection strategy (auto, square 
root, or logarithm base 2). These parameters were optimised using a 
50-draw randomised search combined with three-fold expanding-
window cross-validation. 

Chen and Guestrin (2016) proposed XGBoost as a highly 
efficient implementation of gradient-boosted decision trees, integrating 
regularisation, sparse-aware splitting and parallel computation. Its 
effectiveness in structured financial data has been showcased by 
Bentejac et al. (2021), who reported top-tier accuracy across a suite of 
time-series prediction tasks. The model was configured with similar 
optimisation procedures. The hyperparameter space included between 
100 and 500 boosted trees, tree depths from 3 to 11, learning rates 
between 0.01 and 0.2, and subsample and column sample ratios 
ranging from 0.6 to 1.0. 

The Long Short-Term Memory (LSTM) networks, originally 
formulated by Hochreiter and Schmidhuber (1997) to mitigate the 
vanishing-gradient problem, excel at capturing long-range temporal 
dependencies. Fischer and Krauss (2018) employed LSTMs to 
forecast stock returns and documented significant improvements over 
feed-forward networks and classical autoregressive models. Prior to 
training, Liquidity Score values were scaled to the [0,1] range and 
segmented into sequences of 30 days. The network architecture 
consisted of two LSTM layers: the first returned sequences, and the 
second produced a final state connected to a dense output layer. The 
model configuration involved a manual grid search across layer units, 
dropout rates, optimiser selection, number of epochs, and batch size. 
Early stopping with a patience threshold of five and a learning rate 
reduction on plateau were employed to prevent overfitting. 

CatBoost, developed by Prokhorenkova et al. (2018), is a 
gradient boosting library that handles categorical features natively 
without the need for extensive preprocessing. By employing ordered 
boosting and a novel scheme for encoding categorical variables, 
CatBoost mitigates overfitting and achieves competitive performance 
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on tabular datasets. In financial modeling, its efficiency in handling 
heterogeneous data types and robustness against overfitting make it 
particularly useful for tasks like credit scoring and market prediction, as 
evidenced in recent comparative studies (Hancock and Khoshgoftaar, 
2020). Candidate settings involved 100 to 500 boosting iterations, 
depths from 3 to 11, learning rates between 0.01 and 0.2, L2-leaf 
regularisation values from 1 to 9, and border counts between 32 and 
128. As with the other tree-based models, hyperparameter tuning was 
conducted via randomised search with cross-validation. 

Predictive performance was evaluated on both training and test 
datasets using three standard metrics: mean absolute error (MAE), 
root mean squared error (RMSE), and the coefficient of determination 
(R²). 

4. Results 

Figure 3 presents a comparative time-series visualisation of the 
predicted and actual liquidity scores, smoothed using a 7-day rolling 
mean, for four distinct machine learning models: Random Forest, 
XGBoost, LSTM, and CatBoost. The application of the rolling mean 
serves to attenuate high-frequency fluctuations, thereby emphasising 
the underlying trends in liquidity dynamics. 

This graphical representation substantiates the quantitative 
findings reported in Table 1, demonstrating that the gradient boosting 
models - CatBoost and XGBoost - exhibit superior performance in this 
forecasting task. Their effectiveness can be attributed to a favourable 
trade-off between bias and variance, as well as their capacity to model 
complex feature interactions, which enables more accurate and 
consistent liquidity predictions compared to both the Random Forest 
and LSTM models. 
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Figure 3 
Predicted vs. Actual Liquidity Score (7-day rolling mean) 

 
Source: Author’s contribution 

The real liquidity score is shown in blue, while the predicted values 

from the four models are shown in green (Random Forest), orange (XGBoost), 

red (LSTM), and purple (CatBoost). The visual comparison is directly 

contextualised by the predictive performance metrics summarised in Table 1, 

which reports the Mean Absolute Error (MAE), Root Mean Squared Error 

(RMSE), and R² scores for both the training and test sets. 

Table 1 
Comparative Analysis of Models 

Model Set MAE RMSE R2 

Random Forest Train 97244.25 196117.72 0.9048 

Random Forest Test 377219.77 560692.67 0.514 

XGBoost Train 27862.92 35918.51 0.9968 

XGBoost Test 282033.17 418484.69 0.7293 

LSTM Train 301608.96 461820.94 0.474 

LSTM Test 476552.01 655444.26 0.3358 

CatBoost Train 40629.89 53966.24 0.9928 

CatBoost Test 281549.74 414466.17 0.7344 

Source: Author’s contribution 



Financial Studies – 2/2025 

44 

The XGBoost and CatBoost models clearly demonstrate 
superior generalisation capability, with test set R² values of 0.729 and 
0.734 respectively, and the lowest RMSE and MAE scores among the 
models tested. Their forecast lines follow the actual liquidity values 
closely, capturing not only trend direction but also amplitude in periods 
of increased market turbulence — particularly around peak liquidity 
episodes. 

In contrast, Random Forest exhibits significant performance 
degradation on the test set, dropping from an R² of 0.905 during 
training to just 0.514. This overfitting is also reflected visually: the green 
prediction line tends to lag behind actual liquidity changes and fails to 
replicate the higher-magnitude oscillations. The model is evidently not 
robust enough for forecasting extreme events. 

The LSTM model, despite being a recurrent neural network 
capable of modelling sequential dependencies, underperforms both 
statistically and visually. With the lowest R² on the test set (0.336), it 
fails to capture the underlying signal effectively. The red curve appears 
smoothed and delayed, indicating that the model may have failed to 
learn the temporal structure inherent in the liquidity series, possibly due 
to insufficient tuning, model complexity, or lack of deeper layers. 

5. Conclusion 

The paper has examined the capacity of four leading machine-
learning algorithms - Random Forest, XGBoost, CatBoost and Long 
Short-Term Memory network - to forecast daily liquidity in the German 
blue-chip equity market. Employing a Liquidity Score that balances 
turnover against intraday price dispersion and an extensive dataset, 
the study applied an identical walk-forward validation framework to 
ensure methodological comparability and to replicate real-time 
deployment conditions. 

The empirical evidence indicates that gradient-boosting 
ensembles markedly surpass both Random Forests and the standard 
LSTM architecture. CatBoost, closely followed by XGBoost, 
consistently generated the lowest forecast errors and reproduced 
abrupt liquidity contractions more faithfully than its competitors. These 
results highlight the superior ability of boosting algorithms to capture 
complex, non-linear interactions among heterogeneous predictors 
while maintaining robustness against overfitting, and they underline the 
importance of a thoughtfully designed feature set that reflects the 
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microstructural determinants of liquidity. By contrast, the LSTM’s 
weaker performance suggests that recurrent networks may require 
longer or cleaner sequences—or more sophisticated tuning regimes—
before they can rival tree-based methods in this context. 

The study makes two substantive contributions to the literature. 
First, it introduces a parsimonious yet theoretically grounded liquidity 
metric that integrates both price impact and trading activity. Second, it 
proposes a systematic feature-engineering pipeline that balances 
informational breadth with parsimony by filtering for multicollinearity.  

While the analysis focuses exclusively on the DAX index to 
ensure methodological depth and data consistency, this limits 
generalizability. Nonetheless, the modelling framework - especially the 
Liquidity Score and the structured feature set - is flexible and can be 
adapted to other developed equity markets. Future research could 
validate the findings by applying the same methodology to broader 
indices such as the EURO STOXX 50 or FTSE 100. Even a moderate 
cross-index comparison could strengthen external validity and reveal 
how model performance varies across market structures and liquidity 
regimes. 

From a practical perspective, the study offers meaningful 
implications for multiple stakeholders. For traders and market-makers, 
the ability to anticipate short-term liquidity swings can inform order 
execution strategies, limit market impact, and optimise timing. Fund 
managers may integrate such forecasts into portfolio rebalancing 
processes or liquidity risk budgeting frameworks. Regulators and 
central banks can benefit from early-warning signals of liquidity stress, 
particularly in monitoring systemic risk in blue-chip segments of the 
market. The lightweight nature of the Liquidity Score and the real-time 
adaptability of boosting algorithms further enhance the feasibility of 
embedding such models into operational systems or supervisory 
dashboards. 

Several limitations delimit the generalisability of the findings 
and motivate future research. The analysis is restricted to daily data for 
a single blue-chip index, leaving open the question of whether the 
observed performance hierarchy persists at intraday frequencies, in 
other asset classes or in less liquid markets. Furthermore, only four 
algorithms were evaluated, and issues of interpretability, computational 
efficiency and live implementation costs were beyond the present 
scope. Finally, the predictor set did not exploit textual sentiment, 
granular order-book information or alternative data sources that may 
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refine short-horizon forecasts. Addressing these gaps, by extending 
the framework to higher-frequency horizons, incorporating richer 
feature spaces and deploying explainable, AI techniques represents a 
promising agenda for subsequent work.  

Taken together, the results underscore the practical utility of 
gradient-boosting methods for short-horizon liquidity surveillance and 
provide a replicable methodological template for advancing research 
and practice in the forecasting of financial-market liquidity. 
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